Chemistry 101 Laboratory Fall 2005 - 2006

Lecture4 Chemical Reactions and Acid Rain

- To observe different ways of detecting chemical changes.
- To be introduced to the basic types of chemical reactions.
- To produce one of the main components of acid rain (sulfuric acid) and to observe some of its properties.

Detection of Chemical Changes

Five main observations usually indicate that a chemical reaction has occurred.

1- Precipitate formation. 2- Gas evolution.

- Use a lit wooden splint to identify the gas evolved
- □ If the gas is oxygen, the splint will grow brighter.
- If the gas is hydrogen, a popping sound will occur as the hydrogen ignites.
- If the gas is carbon dioxide, the ignited match will go out.

Detection of Chemical Changes (Cont'd) 3- *Color changes*.

- 4- Heat / energy evolved or absorbed: the test tube becomes warm or cold or light/fire is given off.
- Reactions that give off heat are *exothermic*.
- Reactions that absorb heat are *endothermic*.

5- Change in acidity:

- Use a litmus paper to detect a change in the acidity of a solution.
- Litmus paper is pink in acidic solutions and blue in basic solution

Types of Chemical Reactions

a- Precipitation Reactions: Are double replacement reactions that are characterized by the formation of an insoluble product or precipitate.

 $Pb(NO_3)_2(aq) + 2Nal(aq) \longrightarrow Pbl_2(s) + 2NaNO_3(aq)$

precipitate

molecular equation

$$Pb^{2+} + 2NO_{3}^{-} + 2Na^{+} + 2I^{-} \longrightarrow PbI_{2}(s) + 2Na^{+} + 2NO_{3}^{-}$$

ionic equation

$$Pb^{2+} + 2l^{-} \longrightarrow Pbl_{2}(s)$$

net ionic equation

Na⁺ and NO₃⁻ are *spectator* ions

n Ionic Compounds in Water at 25°C Exceptions		Halides of Ag^+ , Hg_2^{2+} , and Pb^{2+} Sulfates of Ag^+ , Ca^{2+} , Sr^{2+} , Ba^{2+} , Hg^{2+} , and Pb^{2+}	Exceptions	Compounds containing alkali metal ions and the ammonium ion Compounds containing alkali metal ions and the Ba^{2+} ion
Solubility Rules for Commor Soluble Compounds	TAB Compounds containing alkali metal ions (Li ⁺ , Na ⁺ , K ⁺ , Rb ⁺ , Cs ⁺) and the ammonium ion (NH ⁺ ₄) Nitrates (NO ₃), bicarbonates (HCO ₃), and chlorates	Halides (Cl ⁻ , Br ⁻ , I ⁻) Sulfates (SO ₄ ²)	Insoluble Compounds	Carbonates $(CO_3^2^-)$, phosphates $(PO_4^3^-)$, chromates $(CrO_4^2^-)$, sulfides (S^2^-) Hydroxides (OH^-)

b- Neutralization Reaction

Are double replacement reactions in which H⁺ ions are transferred between reactants

acid + base \longrightarrow salt + water HCI (aq) + NaOH (aq) \longrightarrow NaCI (aq) + H₂O H⁺ + Cl⁻ + Na⁺ + OH⁻ \longrightarrow Na⁺ + Cl⁻ + H₂O H⁺ + OH⁻ \longrightarrow H₂O

c- Oxidation-Reduction Reactions

Combination Reaction

$$A + B \longrightarrow C$$

$$S + O_2 \longrightarrow SO_2$$

A CONTRACT OF CONTRACT.

 $C \longrightarrow A + B$

 $2\text{KCIO}_3 \longrightarrow 2\text{KCI} + 3\text{O}_2$

c- Oxidation-Reduction Reactions (Cont'd)

Displacement Reaction

 $A + BC \longrightarrow AC + B$ A should be <u>more active</u> than B

- $Mg + 2 HCI \longrightarrow MgCl_2 + H_2 \qquad Hydrogen Displacement$ from acid
- $2Na + 2H_2O \longrightarrow 2NaOH + H_2$ Hydrogen Displacement from water

 $Zn + CuSO_4 \longrightarrow ZnSO_4 + Cu$ Metal Displacement from salts

The Activity Series for Metals

An atom of an element in the activity series will displace an atom of an element below it from one of its compounds .

Experimental- Part A

1- Precipitation reactions: BaCl₂(aq) +K₂SO₄(aq) \longrightarrow BaSO₄(s) + 2KCl(aq) white

- 2- Acid Base reactions: $CaCO_3 + 2HCI \longrightarrow CaCI_2 + H_2O + CO_2$ Check for the gas
- 3- Oxidation Reduction reactions:
- a- <u>Combination</u> (Formation of iron sulfide): Fe + S \longrightarrow FeS Exothermic or endothermic reaction?

Experimental- Part A (cont'd)

b- <u>Decomposition:</u>

 $2H_2O_2(aq) \xrightarrow{MnO2} O_2(g) + 2H_2O(I)$ Check for the gas

- c- <u>Single replacement:</u>
- *i-* Replacement of hydrogen from water $2Na + 2H_2O \longrightarrow 2NaOH + H_2$ *BE CAREFUL! (Na)* Check acidity using litmus

Experimental- Part A (cont'd)

ii- Replacement of hydrogen from acids: $M + x HCI \longrightarrow MCIx + \frac{x}{2}H_2$

M is Cu, Fe, Al, Zn or Mg

Observe rate of H_2 evolution and arrange the metals in order of chemical activity.

iii- replacement of metals from their salts: $Zn + CuSO_4 \longrightarrow ZnSO_4 + Cu$ Explain your observations

Acid Rain

- Any atmospheric precipitation that is more acidic than usual.
- It is a growing environmental problem worldwide.
- Formation:
 - Emission of nitrogen and sulfur oxides into the air from the burning of fossil fuels.
 - Chemical reactions between the oxides and water forming sulfuric acid (H_2SO_4) and nitric acid (HNO_3)

Effects of Acid Rain

- Freshwater, plants and animals decline significantly when rain is acidic.
- aluminum is leached from the soil into lakes and adversely affects fish gills.
- the waxy protective coat on plants is dissolved making them vulnerable to bacteria and fungal attack.
- it is responsible for extensive and continuing damage to buildings, monuments and statues.

Experimental – Part B

• Place a small lump of sulfur into a deflagration spoon and ignite it under the hood.

$$S + O_2 \longrightarrow SO_2$$
$$2SO_2 + O_2 \longrightarrow 2SO_3$$

 Trap the formed SO₃ in a wide-mouth bottle and add water.

 $SO_3(g) + H_2O(I) \longrightarrow H_2SO_4(I)$

Check acidity of the solution